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ABSTRACT 

In the observation slewing  of long base-line'interferometers formed  by multiple b 

flying spacecraft in formation, it is required to  rotate  the entire formation about a given 

axis, and to synchronize individual spacecraft rotation with formation rotation. Using a 

particle model  for spacecraft formation dynamics, and a rigid-body  model  for spacecraft 

attitude dynamics, control laws are derived  for this mode of operation in the absence of 
&r*dig 

gravitational field and disturbances. A simplified control law suitable for implementation is 

also obtained. It is  shown that under mild conditions, the formation alignment error decays 

to zero exponentially with time. Computer simulation studies are made for a free-flying 

spacecraft triad in a triangular formation. The results show that  the developed control laws 

are effective in synchronized formation rotation. 

INTRODUCTION 

%cent interest in developing  long  base-line interferometers using multiple spacecraft 
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led to the  study of  various  problems  in the coordination and control of multiple space- 

craft in formation. The use of multiple spacecraft for  Michelson stellar interferometry was 

first  proposed by Stachnik, Ashin, and Hamilton112. The feasibility of this approach for 

spacecraft in  geosynchronous and low-earth orbits was studied by Johnson and Nock 3 ,  and 

DeCue '. The operation of such interferometers calls  for observation slewing  which  requires 

the  rotation of the entire formation about a given  axis.  Moreover,  each spacecraft must 

rotate in  synchronism with formation rotation. In this paper, we consider multiple free- 

flying spacecraft in formation which are of basic importance in long baseline deep space 

interferometers5. Attention is  focused on developing control laws  for formation rotation and 

attitude synchronization. 

We begin with  the basic dynamic model of the multiple spacecraft to be used  in the 

development of control laws  for formation flying. This is  followed  by a discussion of the 

formation rotation  and attitude synchronization problem. Then, control laws for  performing 

the required task  are derived. The paper concludes with typical results of a computer 

simulation study for a free-flying spacecraft triad. 

DYNAMIC MODEL FOR FORMATION FLYXNG 

We assume there are N spacecraft to be flown in formation in  the  three dimensional 

Euclidean space R3,  and each spacecraft is a rigid  body with fixed center of mass. Let 30 

denote the  inertial frame with origin 0 E R3, and Fi a moving body frame whose  origin Oi 

is at  the mass center of the  i-th spacecraft (see  Fig.1). For a given orthonormal basis Bi for 

3 i ,  the representation of a vector a E R3 with respect to Bi will be denoted by [a]'. Let 

ri(t) denote the position of the mass center of the  i-th spacecraft at time t in R3 relative to 

Fo. In the absence of gravitational field and disturbances, the evolution of ri(t) with time 
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is  governed  by 

2);(r;) = f & / M ; ,  

where fci  and M ;  denote the control thrust  and mass of the  i-th spacecraft respectively; D! 

is the time derivative operator defined  by 

2 A id2(*)   'dwi   'd  (-) 
' dt2  + - d t  x (*) +2w;  x - + w i   d t  x (w;  x .), 

2). = - 

where ' d / d t  and ' ( d 2 / d t 2 )  denote the  time derivative operators with respect to  the body 

frame 3;, and w; the angular velocity of 3; with respect to the  inertial frame 30. 

In formation flying, it is  of importance to consider the relative motion between  any pair 

of spacecraft. Let p j i  = rj - ri denote the position of the  j-th spacecraft relative to 3 i .  

Using (1) and ( 2 ) ,  it can be verified that  the evolution of p j i ( t )  with time is governed  by 

The attitude and angular velocity of the  i-th spacecraft with respect to  the inertial 

frame 30 can be described by the following quaternion equations6: 

and  the Euler's equation: 

where the centered dot denotes scalar product in R3;  q; = (qT,q;4)T denotes the unit 

quaternion with qi j  being the Euler symmetric parameters; and q; = (qil,  qi2,  qi3)T; I ;  and 
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Tci are  the tensor of inertia in the body frame Fi and  control torque associated with the  i-th 

spacecraft respectively. 

FORMATION ROTATION AND ATTITUDE  SYNCHRONIZATION 

There  are many  ways  for flying spacecraft in formation. In the approach of  Wang 

and Hadaegh7s8, the first spacecraft is taken as the reference spacecraft whose  motion r1 = 

rl(t) ,t  5 0 serves as the reference motion for the remaining N - 1 spacecraft (see Fig.1). 

The desired motion for the  i-th spacecraft, i = 2, .  . . , N ,  is  specified  by 

where hi(t)  E R3 is a  specified  nonzero deviation  vector defined  for all t 2 0. The i-th 

spacecraft tries to track  the motion of the reference  spacecraft such that  the norm of the 

tracking error 

is as small as possible. The desired formation  pattern at any time t 2 0 is  specified by the 

point set P ( t )  = (rl(t), rl(t) + h2(t), . . . , rl(t) + hN(t)}. 

Another approach is  based  on nearest-neighbor  tracking. Here the motion of the (i - 1)- 

th spacecraft serves as the reference  motion  for the  i-th spacecraft, and  the desired  motion 

for the  i-th spacecraft is  specified by di( t )  = ri-l(t) + hi( t ) , t  2 0. This approach could 

lead to undesirable formation pattern instability or oscillations. In what follows,  we shall 

consider  only the former case. 

Now, consider the formation body C ( t )  defined by the convex  hull  of P ( t )  (i.e. the 

set of points formed  by  all  convex  combinations  of the points in P ( t ) ) .  Let R(t) be a 

specified  nonzero vector in R3.  It is required to  rotate C ( t )  about an axis defined by the line 
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L(t) = a(t) + span{R(t)) with specified angular velocity Q(t) as illustrated in  Fig.2,  where 

a(t) is  a  specified vector in R3. Moreover, the reference  spacecraft  must rotate about a given 

body  axis in synchronism with the formation body rotation,  and  the remaining spacecraft 

must track the reference spacecraft's attitude  and angular velocity. This implies that  the 

desired angular speed of the reference spacecraft is IlQ(t) + Q,(t)Il, and the desired angular 

velocity wf(t)  and  unit quaternion qt ( t )  for the  i-th spacecraft, i = 2,. . . , N ,  are  wl(t) and 

ql(t) respectively,  where Q,(t) is the angular velocity of L(t) with respect to F,. Note that 

wp(t) and qt(t) must be compatible with each other in the sense that they satisfy 

Odqd 
2 = (q!4wp - wi d x $t)/2, dd4 - - ( w f  * $3/2,  dt 

" 

dt 

and 

where qt = ( ( G i )  3 qi4)  * 
d T   d T  

To clarify the foregoing notion of formation rotation  and attitude synchronization, we 

consider a spacecraft triad flying  in  a triangular formation as shown  in  Fig.3.  Let [r]" = 

(2, y, z ) ~  denote the representation of a  point r with respect to an orthonormal basis Bo = 

{e2,  e,,, e,} in  the inertial frame F,. We assume that  the reference spacecraft moves  along 

a circular orbit 0 = {(z, y ,  z )  : z2  + y 2  = a;, z = z,} with radius a ,  and constant angular 

velocity -woez,  and the position of the reference spacecraft is given  by 

rl(t) = (a ,  cos(w,t))e, - (a ,  sin(w,t))ey + z,e,. (9) 



h: = -hgxex - h;,e, + hg,e,. 

Then  the desired initial formation pattern  at time t is specified by the point set 

p( t )  = { rl ( t ) ,  rl ( t )  + hi, rl ( t )  + hi} ( l o b )  

and  the formation body C ( t )  is the plane domain bounded by the isosceles triangle with 

vertices  given by.P(t). For a space interferometer, the combiner and collectors  correspond 

to  the reference and  the remaining spacecraft respe~tively"~. We assume that  the spacecraft 

body is a rigid  cylinder with uniform mass density.  Let Bi = {e:,, et,, et ,}  be  an orthonormal 

basis  for the body frame Fi for the  i-th spacecraft such that et, is along the cylinder axis 

which  is  also  aligned with e,. We consider two  different  cases: (a)  the 2'-axis  is  aligned with 

z-axis; and  (b)  the 3'-axis  passes through the center of the circular orbit 0 at all times, 

except during formation rotation (see  Fig.3).  Case (a) corresponds to  the situation where 

it is required to have the instruments or solar panels onboard the spacecraft pointing to a 

fixed  direction. Thus, the desired angular velocities w: for  Cases (a) and (b) are zero and 

-woez respectively. 

. .  

Now, suppose that  the objective is to  rotate  the triangular formation about the reference 

spacecraft's cylinderical  body  axis with constant angular velocity s1 = -wRe,. Thus, the 

rotation axis L ( t )  for C ( t )  is simply span{e , ) ,  and the deviation vectors h2(t) and h3(t) 

take on the form: 

h2(t) = (hgx cos(w~t) - h& sin(wRt))e,  + (hgx sin(wRt) + h& ms(wRt ) )e ,  + h&e,, 

h3(t) = (-hgx cos(w~t) + hg,sin(wRt))e, + (-hgx sin(wRt) - hg,cos(wRt))e, + hgzez. (11) 

During formation rotation,  the desired angular velocity wf for the reference  spacecraft 

relative to  the  inertial frame Fo is -wRez for  Case (a), and -(wo +wR)ez  for  Case (b). The 
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corresponding  desired quaternion for the reference spacecraft can be determined from (8a) 

which can be written explicitly as 

where WT = wR/2for Case (a),  and WT = (w,  + w ~ ) / 2  for  Case (b). 

The solution to ( 1 2 )  with initial condition (Ql( t1)T,q14(t l ) )T at time t l  (the  starting 

time for formation rotation) is  given  by 

where 

CONTROL LAWS 

To  derive  a  control  law for formation acquisition and rotation, we consider the following 

equation for the tracking error Ei( t ) ,  i = 2 , .  . . , N defined  by (7): 

and  the following  positive definite function of (E; ,  E i )  defined on R6: 

where E i k i d E i / d t ,  E ; k i d 2 E i / d t 2 ,  and hi=*dwi/dt .  The time  rate-of-change of V1i along 

any  solution of ( 1 5 )  is  given by 

A -  



where 

Since Ei(t) - ( w i ( t )  X E i ( t ) )  = 0 for all w i ( t ) ,  it follows that all solutions (Ei(t),Ei(t)) of 

(20) tend to ( 0 , O )  E R6 as t + 00 for  any K l i ,   K 2 i  > 0 , i  = 2, .  . . , N .  Moreover, the 

zero state of (20) is totally stable or stable under persistent disturbances6s8. This property 

implies that asymptotic stability of the zero state of (20) is preserved  in the presence of 

small state-dependent perturbations. 



? 2 i 

where sat(.) denotes the  saturation function defined by sat(a) = sign(a) if la1 2 1 and sat(a) 

then 
3 

dVli/dt = C{[E;]f([w;]f - -sat(gij(wi, [E;];, [Ei];, fc., hi))}, Fci 

j= 1 Mi 

For control law (21), (15) has the following representation with respect to basis Bi: 

It can be readily verified that if ~ ~ w ~ ( t ) ~ ~ ,  Ilfcl(t)II, ~ ~ D ~ ( h ~ ) ( t ) ~ ~ ,  and 117-ci(t)ll are uniformly 

bounded for all t 2 0, then  the set {([Ei];, [E;]') E R6 : Igij(wi, [E;];, [E;]:, fcl, hi)] < - 1 , j  = 

1,2,3} contains a neighborhood of the zero state ( 0 , O )  E R6. Consequently,  any solution 

[(E;(t),E;(t))]; of (24) tends to  the zero state as t -, 00 for  any  feedback  gains K1; and 

K2; > 0, and sufficiently  small Il([Ei(O)];, [ E ; ( O ) ] ' ) I l .  

To derive control laws  for the reference and remaining spacecraft to achieve sttitude 

synchronization, we introduce 

6q;Aqf - q; = ((q: - q;) , qi4 - q;4)T, 6w;=w; - w;. T d  A d  (25) 

where qf = ql, and wf = w l ,  for i = 2 , .  . . , N .  It follows from (4),(!5), and (8)  that 6qi  and 

6wi satisfy 

Od6qi 
dt 
" - (qt4wf - q;4w; - wf x q4 + wi x $ i ) / 2 ,  
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and 

we obtain the following attitude control law: 

where K,; and Kwi are positive constant feedback  gains, and 

It can be verified7 that under the action of control law ( 2 9 ) ,  any solution ( Q ; ( t ) , 6 q 1 4 ( t ) ,  

6w;( t ) )  of (26) and (27) tends to ( O , O ,  0) E R7 as t + 00. 

In the case  where the control torques rd are  amplitude limited (i.e. [.dli = (rC;l,rd2, 

~ ~ ; 3 ) ~  satisfies )rdjl 5 Tc;, j = 1,2,3),  where Td, i = 1,. . . , N are given  positive constants, 

we set 

Here,  since the control torques are amplitude limited, loss of synchronization can occur 

when the  angular speed of formation rotation or the reference spacecraft is so high that  the 

remaining spacecraft are unable to track the formation rotation. The possible  occurrence of 

this phenomenon  can be deduced from the following inequality obtained by first integrating 
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(27) from time t ,  to t ,  and making  use of the triangle inequality Ila - bll 2 llall - llbll for 

norms of vectors a and b: 

where Ilalloo=rnax(lail;i = 1,2,3) and a = (a l ,a2 ,  a3). Now, suppose that  the desired 

angular speed is such that  the corresponding r z ’ s  satisfy 11 q$(s)dsllb0 - T ~ ( t  - t , )  2 

A 

qi(t  - to)  for all t in  some time interval IT = [to, TI, and some positive constant vi. Then 

the norm of the deviation in the angular momentum of the  i-th spacecraft from its desired 

value  grows with  time over IT.  Consequently,  loss of synchronization results. 

From (18) and (19), it is evident that  the formation control law consists of feedback 

terms involving Ei( t ) ,  E i ( t ) , w i ( t )  and ~ d ( t ) ;  and feedforward terms involving D:(hi)(t) 

and the control thrust fcl(t) of the reference spacecraft. Figure 4 shows the  structure of 

the overall control system. The referencepath parameters are fed into the  referencepath 

command generator which  produces the necessary data for generating the controls for the 

reference spacecraft. Similarly, the formation-pattern parameters are fed into the formation- 

command generator for the  i-th spacecraft, whose output along with the displacement, 

velocity, quaternion, and angular velocity of the  i-th spacecraft  relative to  the reference 

spacecraft are used in generating the controls  for the  i-th spacecraft. 

SIMPLIFIED CONTROL LAWS 

Control laws (19) and (21) for  formation  acquisition and  rotation have  complex  forms 

which cannot be readily  implemented. In what follows,  we shall consider  a  simplified  version 
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Substituting (33) into (15) leads to the following linear timevarying differential equation 

for the tracking erroc 

Ei(t) + Ri(t)Ei( t )  + Si(t)Ei(t) = 0 ,  (35) 

where R,(t)  and S i ( t )  are linear transformations on R3 into R3 defined by- * 

Consider the following function defined on R6: 

where 7 is a positive constant. Since Kli is a positive  self-adjoint linear transformation, 

hence 

where Amin(K1i) denotes the minimum  eigenvalue of Kli. Rom (39) and the inequality 

E i  - Ei 2 - l l E i I I  11Ei11, it  follow^ that satisfies the lower bound: 
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then Pi is  positive  definite on R6. We shall show that under certain mild  conditions, the 

zero state of (35) is exponentially stable. 

Consider the time-rate-of-change of Pi given by 

I 

dVi/dt  = 7 E i  . (Ilwil121 - K1i)Ei + E i  * (71  - K2i)Ei  - 7 ( w i  Ei)2 

- E i  . (&i X Ei)  - (wi * Ei)(Ei * wi)  + Ei (Ilwil121 - 7 K 2 i ) E i  - 27Ei (wi X Ei). (43) 

From (5), it is  evident that for bounded control torque T& (i.e. 11~d(t)II 5 +& < 00 for 

all t 2 0 ) ,  there exist  positive constants ai and p i  such that 

Then d'l/i/dt satisfies the following estimate: 

where 



(47) 

It follows that 

ci(t) I V ; ( O )  exp(--2(X,in(Q)/Xm;n(P))t} (49) 

for all t 2 0, which  implies exponential stability of the zero state of (35). 

Remark: The inclusion of the  term i%i in control law (33) is essential in  achieving 

exponential stability. Since i%; given  by (34) involves the deviation vector h;(t) and control 

law fcl associated with the reference spacecraft, these data must be  transmitted  to  the  i-th 

spacecraft. If the  i-th spacecraft receives the deviation vector h;(t) and  its velocity hi(t) 

from the reference spacecraft, and has onboard sensors to measure the relative position 

p ; l ( t )  and velocity bi l ( t ) ,  then the positional error  and error rate can be determined by 

Ei(t) = hi(t) - p i l ( t )  and Ei(t)  = hi(t) - bil(t) respectively. These data  are required  for 

the implementation of the simplified control law (33). 

SIMULATION STUDY 

To determine the effectiveness of the proposed control laws,  we consider a spacecraft 

triad discussed  earlier. The spacecraft parameter values are given  in the Appendix. We 

only present typical simulation results for  Case (a) where the desired angular velocity  for 

the reference spacecraft is  zero  before and  after formation rotation. 

Consider the scenario  where the first  spacecraft generates a circular reference orbit for 

the remaining two spacecraft given  by (9) with w ,  = 0.071 rad/sec. The spacecraft are 
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At t = 50 sec, the formation begins rotation for half a revolution about the vertical axis 

with desired constant angular velocity s1 = -0.25ez rad/sec. It is required that  the reference 

spacecraft also rotates  about the vertical axis in synchronism with the formation rotation, 

and  the remaining two spacecraft track  the attitude of the reference  spacecraft.  At t = 100 

sec, the spacecraft triad expands to a larger triangular formation with P ( t )  given  by (lob) 

with 

h$ = -8e, - 12ez, hg = 8e, - 12e,. (51) 

Finally, at t = 150, the formation rotation is repeated. Typical simulation results for 

control law (19) are shown  in  Fig.5 depicting the trajectories of the spacecraft triad in 3- 

dimensional  space. The time records  for the quaternions and  angular velocities are shown  in 

Figs.6a and 6b  respectively. The  time records for the  attitude errors  and the norms of the 

position tracking errors for spacecraft 2 and 3 relative to  the reference spacecraft are shown 

in Figs.7a and 7b respectively. The time records  for the distances between  spacecraft 2,3 

and  the reference spacecraft are shown  in  Fig.8.  Here, the feedback  gains Kli, K2i, K,i and 

K,i have  been tuned to achieve rapid response with acceptable overshoot. Their values are 

given  in the Appendix.  Simulation studies for the case with simplified control law (33) with 

Kli = KliI and K2i = K2iI have  also  been obtained. The results do not  differ appreciably 

from those given here for control law (19). A video depicting the simulation results for 

various  scenarios  in  synchronized formation rotation is  available". 
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CONCLUSION 

In  this  paper, control laws  for formation rotation of multiple free-flying spacecraft about 

a given axis, and synchronization of individual spacecraft rotation with formation rotation 

are derived  using a simplified dynamic model  in the absence of gravitational field and  other 

disturbances. Simulation studies based  on a generic spacecraft model  showed that  the de- 

rived control laws are effective for this mode of operation. In the presence of amplitude 

limited control thrusts,  the derived control laws are effective  provided that  the formation 

rotation speed is  sufficiently low.  Various problems associated with  the implementation . 

of the control laws for  real spacecraft, and the effect  of gravitational and environmental 

disturbances on the spacecraft motion are not  considered  here. They require further study. 

Acknowledgment 

This work  was performed at  the Jet Propulsion Laboratory, California Institute of 

Technology, under contract with the National Aeronautics and Space Administration. The 

authors wish to  thank  the referres  for their helpful  comments. 

References 

Stachnik, R, Ashlin, K. and Hamilton,S.,"Space  Station-SAMSI: A Spacecraft Array 

for  Michelson Spatial Interferometry," Bulletin of American  AstmnomicaZ SOC. Vol.16, 

NO.3, 1984,  pp.818-827. 

Stachnik, R.V. et d,"Multiple Spacecraft  Michelson Stellar Interferometry," Proc. 

SPIE,  Instrumentation  in  Astronomy V .  Vo1.445,  pp.358- 369, 1984. 

Johnson, M.D. and Nock, K.T.,"Multiple  Spacecraft Optical Interferometry Trajectory 

Analysis,"  Workshop  on  Technologies  for  Space Interferometry, Jet Propulsion Labora- 

16 



tory, Pasadena, Calif. April  30-May 2, 1990. 

DeCue  A.B., "Multiple Spacecraft Optical Interferometry, Preliminary Feasibility As- 

sessment," JPL Technical Internal Report D-8811, Aug.  1991. 

Lau, K., Colavita, M., and Shao, M.,"The New Millennium Separated Spacecraft Inter- 

ferometer," Presented at  the Space Technology and Applications International Forum 

(STAIF-97), Albuquerque, NM, Jan. 26-30,  1997. 

Kane, T.R, Likins, P.W. and Levinson,  D.A., Spacecruft Dyzamics, McGraw-Hill, N.Y., 

1983. 

Wang, P.K.C. and Hadaegh, F.Y.,"Coordination and Control of Multiple Micro-space- 

craft Moving in Formation," J.  Astronautical  Sciences, Vo1.44,  No.3, 1996, pp.315-355. 

Wang, P.K.C. and Hadaegh, F.Y.,"Simple  Formation-keeping Control Laws for Multiple 

Microspacecraft," UCLA Engr.Rpt. 95-130, August, 1995. 

Hahn, W., Stability of Motion, Springer, N.Y.,  1967 (page 275). 

lo "Formation Flying of Multiple Spacecraft," JPL Video  No.AVC-97-039, Jet Propulsion 

Lab. Pasadena, Nov.5,  1996. 

17 



/ 

APPENDIX 

Parameter Values for Simulation Study 

Spacecraft mass (kg): 

M1 = 20; M2 = M3 = 10. 

Moment of inertia about zi-axis (kg m2): 

Izl = 0.7290; Iz2 = Iz3 = 0.3645. 

Moment of inertia about yi-axis (kg m2): 

Ivl = 0.54675; Iv2 = Iv3 = 0.2734. 

Moment of inertia about zi-axis (kg m2): 

Izl = 0.625; Iz2 = Iz3 = 0.3125. 

Feedback  gains: 

Kli = 1, K2i = 10, i = 1,2,3; 

Kql = 1;  Kq2 = Kq3 = 0.335. 

Kwl 5.5; Kw2 = Kw3 = 10; 
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Figure Captions 

Fig.1  Sketch of coordinate systems. 

Fig.2 Formation rotation  about  the line L( t ) .  

Fig.3 Rotation of spacecraft triad in a triangular formation. 

Fig.4 Structure of the overall control system. 

Fig.5 'Ikajectories of s spacecraft triad undergoing formation reconfiguration and  rotation in 

3-dimensional  space. 

Fig.6a Quaternion components of spacecraft triad versus  time. 

Fig.6b Angular velocity components of spacecraft triad versus  time. 

Fig.7a Time records  for the  attitude errors of spacecraft 2 and 3 relative to  the reference 

spacecraft (A1i - relative attitude angle between the  i-th and the reference spacecraft). 

Fig.% Time records for the norm of position tracking errors of spacecraft 2 and 3 relative the 

reference spacecraft. 

Fig.8 Time records for the distances between spacecraft 2,3 and the reference spacecraft (dil-  

distance between the  i-th and the reference spacecraft). 

19 



REFERENCE 

SPACECRAFT 

INERTIAL FRAME 

Fig.1 Sketch of coordinate systems. 



Fid.2  Formation rotation about the  line L(t ) .  



Case (a) Case (b) 

Fig.3 Rotation of  spacecraft  triad  in a triangular  formation. 
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SPACECRAFT TRIAD MOTION IN 30-SPACE 

50 

Fig.5 najectories of a  spadecraft  triad  undergoing  formation  reconfiguration  and rotation in 
3-dimensional  space. 
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Fig.6a Quaternion components of spacecraft  triad  versus  time. 
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Fig.6b Angular velocity components of spacecraft  triad versus time. 



0.05 

- - 0.04 

I I I I 

- 0.03 
n 

k 

- 
W 

3 0.02 
- 

0.01 

0 

- 

0 50 100 I 5 0  200 250 
Time (sec) 

0.05 - I 1 I I 

0.04 - - - a 
2 0.03 - 

W 

- 
- 

0 50 100 150 200 250 
Time (sec) 

Fig.7a Time records for the  attitude errors  of spacecraft 2 and 3 relative to the  reference 
spacecraft. ( A l i  - the relative attitude angle between i-th spacecraft  and the reference 
spacecraft) 
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Fig.8 Time records  for the  distances  between  spacecraft 2,3 and the  reference  spacecraft. 
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